Modeling nuclear reactor core dynamics with recurrent neural networks

نویسندگان

  • Tülay Adali
  • Bora Bakal
  • M. Kemal Sönmez
  • Reza Fakory
  • C. Oliver Tsaoi
چکیده

A recurrent multilayer perceptron (RMLP) model is designed and developed for simulation of core neutronic phenomena in a nuclear power plant, which constitute a non-linear, complex dynamic system characterized by a large number of state variables. Training and testing data are generated by REMARK, a rst principles neutronic core model 16]. A modiied backpropagation learning algorithm with an adaptive steepness factor is employed to speed up the training of the RMLP. The test results presented exhibit the capability of the recurrent neural network model to capture the complex dynamics of the system, yielding accurate predictions of the system response. The performance of the network is also demonstrated for interpolation, extrapolation, fault tolerance due to incomplete data, and for operation in the presence of noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Reactor Core Dynamics Control Using Neural Networks

Stable power processes are never guaranteed. An assortment of unstable behaviors wrecks power apparatus, including mechanical vibration, malfunctioning control apparatus, unstable fluid flow, unstable boiling of liquids, or combinations thereof. A necessary condition for stable reactor power is that the reactor distortion accompanying a temperature rise decreases the reactivity, thus slowing an...

متن کامل

Using a multi-state recurrent neural network to optimize loading patterns in BWRs

A Multi-State Recurrent Neural Network is used to optimize Loading Patterns (LP) in BWRs. We have proposed an energy function that depends on fuel assembly positions and their nuclear cross sections to carry out optimisation. Multi-State Recurrent Neural Networks creates LPs that satisfy the Radial Power Peaking Factor and maximize the effective multiplication factor at the Beginning of the Cyc...

متن کامل

Modeling pH Neutralization Process using Fuzzy Dynamic Neural units Approaches

In this paper, a new architecture combining dynamic neural units and fuzzy logic approaches is proposed for a complex chemical process modeling. Such processes need a particular care where the designer constructs the neural network, the fuzzy and the fuzzy neural network models which are very useful in black box modeling. The proposed architecture is specified to the pH chemical reactor due to ...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1997